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It is shown that the effect of secondary flow on the separation of a three-dimen- 

sional boundary layer is determined by the parameters composed of coefficients 
at terms of second order of smallness in expansions of variables which define the 
external stream in the neighborhood of particular cross section of the boundary 

layer. Formulas are derived for appropriate parameters which must be additionally 
introduced in the separation criterion. 

When deriving separation criteria for plane and three-dimensional boundary 
layers it is customary to use a system of determining parameters which includes co- 
efficients at terms of the first order of smallness in expansions of quantities which 

determine the external stream in the neighborhood of the separation point. Numer- 

ous experiments on the two-dimensional boundary layer show that in a wide class 

of cases, important from the practical point of view, the neglect of some second 
order terms is entirely justified. The effect of some second order parameters may 

become considerable in certain cases of three-dimensional boundary layer sepa- 

ration. 

1. Let us consider the number and physical meaning of determining parameters in 

expressions for the separation criterion, which were derived in [l] and, also, of parame- 
ters which specify the stream in the neighborhood of the separation point to within quan- 
tities of the second order of smallness. 

We locate the origin of a Cartesian system of coordinates at the considered point of 

a streamlined surface with its z - and y -axes lying in a plane tangent to that surface and 
the z-axis normal to the latter. We assume for simplicity that the entropy is constant 
throughout the stream outside the boundary layer and that the motion is vortex-free. We 

denote quantities at the considered point of the surface by subscript zero. The equations 
which define the stream outside the boundary layer can now be presented in the form 

r21 p (au 1 gx + a~ 1 ay + aw i d2) = (1.1) 
--(uap 1 ax + vap 1 ay + wap f a2) 

uau t ax + vau 1 ay + wau 1 a2 + (1 1 p) ap I ax = 0 (1.2) 
uav I ax + vav 1 ay + wav i a2 + (1 1 p) ap 1 ay = 0 
uawlax$-~a~~a~+~aw/a2+(11p)ap/a~ =o 

au av o au Jo_ = o 

---= 7 
-- 

av aw o 
---= 

ay ax az ax f a~ ay (1.3) 

P 1 P” = PO 1 POX (1.4) 
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To specify in zero approximation the stream at a given point outside the boundary layer 

it is necessary to set 
PO7 PO, uot uo (wo = 0) (1.5) 

Phenomena occurring in the boundary layer are affected by the behavior of the outside 

stream only at the layer boundary. To specify the outside stream in the small neighbor- 
hood of a point at the boundary of the boundary layer in the first approximation it is 
necessary and sufficient to specify derivatives of all quantities with respect to x and y 

at that point. It follows from (1.4) that the derivatives of density are expressed in terms 

of pressure derivatives 
(dp / wo = (PO / XPOX~P / wo (1.6) 

cap / wo = (PO / XPO ) tap / w 0 

The first two of Eqs. (1.2) and the first of Eqs. (1.3) yield 

The remaining four equations of system (1.1) - (1.3) contain derivatives du / dz, dv / 
dz , and three derivatives of w, i.e. five unknown quantities, hence they cannot be 

u. (au / axjo + u. (au / akjo = -(ap / ax), / p. 

u. (au / as), + u. (au / ag), = -tap / ag), / p. 

(au / ay), - (ad ax), = 0 

(1.7) 

used for determining the derivatives of u and u with respect to x and 9. Thus to de- 
fine the stream in the first approximation at the boundary of a three-dimensional bound- 

ary layer it is necessary to specify beside the projection of grad p on the tangential 

plane (i. e. in addition to ap / dz and i3p / dy) one more combination of derivatives 
of “U and u with respect to 2 and y. It is logical to specify (aa / an),, as was done 
in Cl], where a is the angle of a streamline to a fixed direction in the tangent plane 

and n is the distance along the normal to the streamline (also in the tangent plane). 
Taking a as the angle of the streamline to the x-axis, we obtain 

tg a = v I u, dx I dn = --sin a, dy I dn = cos a (1.8) 
au 

- - sinacoss a& all- 

VO = (uo2 + uo2P, sin a, = v. / V,, cos a0 = u. / V, 

After differentiation and transformation we have 

(au / an), = (I / vo3) [24,2 (av / ay), + 17~2 (au / ax), - 
U,U, (au / ax + au / ay),l 

(1.9) 

Solving the system of Eqs. (1.7) and (1.9) for derivatives of velocities, we obtain 

( ) L, 
1 

3Fo=- POVO4 II - uo2 (Vo2 + vo”) g o 
i ) + uo%o ($)J + g(g)0 (1.10) 

au 
&J 0 = ax 0 = - povo4 ( 1 -quo3 (g). t-uo$go] - +g)o 

av 
( ) \ay 0 ::, L 

1 
= 7 uovo2 

ap 
( ) ycjy o - vo(V? + uo2) (g-),I + %‘(gqo 

Parameter (aa / an), defines the convergence or divergence of streamlines in the 
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neighborhood of the considered point. The convergence or divergence can be caused by 
two phenomena : the three-dimensional character of the stream, and the effect of pres- 

sure, With the use of Eqs, (1. 7), the equation of continuity (1.1) and formula (1.6),from 
(1.9) we, in fact, obtain 

71, = I(@ / dx),2 + ($I I dy),21’~~ (I. 12) 

where MC, is the Mach number at the considered point and q. is the angle between the 
velocity vector and the projection of the vector grad p on the tangential plane. The 

first term in (1.11) depends on the distribution of stream parameters along the normal 
to the streamlined surface, while the second term depends only on parameters at the sur- 
face itself. Thus in the absence of a pressure gradient either divergence or convergence 
of streamlines may occur at the surface, owing to (au/ / &), being nonzero (e. g. the 

flow past a cone at zero angle of attack). On the other hand (aa i an), may also be 
nonzero even in the case of plane external stream (e. g. at flat side walls of a divergent 

or convergent channel with a straight axis), when (aw / dz), = 0. The divergence or 
convergence of streamlines of the external stream leads to the spreading or contraction 
of the three-dimensional layer, which obviously affects the separation parameter. 

This effect corresponds to computations of a three-dimensional boundary layer 
without allowance for the secondary flow, when the system of equations reduces to a 
form similar to that of equations for the boundary layer on axisymmetric bodies. The 

basic difference from the plane case is in the spreading or contraction of the boundary 

layer with changing radius of the body. 

2, The secondary flow can considerably affect the flow in the neighborh~ of a wall, 
i. e. in that region of the boundary layer which has the greatest effect on separation onset. 
It follows from the foregoing that parameters which define the external stream in the 

first approximation in the vicinity of the considered boundary layer cross section, obvi- 

ously, are insufficient for the determination of secondary streams and of possible chan- 
ges in the criteria of boundary layer separation associated with these. To determine the 
external stream in the neighborhood of the considered point it is, therefore necessary to 

resort to the second approximation. 
To separate the parameters associated with the secondary flow let us consider the case 

in which the stream outside the three-dimensional boundary layer is plane, i.e. its pro- 

perties are independent of z. This occurs, for instance, in the case of flows past cylin- 
drical obstacles standing on a plate, Generally speaking, all statements derived below 
are valid with reasonable accuracy in the more general case, when properties of the ex- 

ternal stream do not strongly depend on z, i.e. when it is possi.ble to neglect in Eqs. 

(1.1) -(I, 3) the derivatives of velocity components with respect to z and take into 
account only those with respect to the other coordinates. This also applies to the sepa- 
ration region, where derivatives with respect to directions in the tangential plane are 
usually considerable. When derivatives with respect to z can be neglected, then (&x / 
an), is no longer an independent parameter and, as can be readily derived from (1.111, 
is expressed in terms of velocity and pressure derivatives 

(aa i an), = (1 - Mo2) [u, (dp / a.& + Ilo (@I / (3$&l / pov, (2.1) 
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To obtain the parameters which determine in the second approximation the external 

stream in the neighborhood of a specified point of the surface we differentiate Eqs. 

(1.1) - (1.4) with respect to 2 and y (neglecting derivatives with respect to z). From 

(1.4) we obtain 

These formulas yield a single-valued expression for the second derivatives of density 
in terms of pressure derivatives. Differentiating with respect to z and y Eq. (1, l), the 

first two of Eqs. (1.2), and the first of Eqs. (1.3), we obtain seven linearly independent 

equations (the eighth can be shown to be a combination of these). Taking into account 
(1.6), we write these equations as 

(2.3) 

a2P u aP aP i32p v ap 2. 
u_-___ -_- - 

ax ay p ax ay +' ayz p ( )I aY o 

(i3% I dzdy), - (d% I dz2)o = 0, (@U I ayyo - (a% I &cay), = 0 

Multiplying the first of Eqs. (2.3) by -no, the second by -v. , and adding these to 
the fifth and seventh equations, we obtain a relationship which does not contain second 

derivatives of velocity components. By simple transformations with the use of (1. lo), 
(1. ll), and of the equality (&J / 3~)~ = 0, this relationship can be reduced to the form 

- (no2 / poV0”) [2 - 2M,2 co32 ‘PO + (1 + x) iIf,* co92 q,] 

The second derivatives of velocity components are uniquely defined by the first six of 
Eqs. (2.3) in terms of pressure derivatives and zero and first order quantities. The deter- 
minant of this system of six linear equations in second derivatives of velocity components 
is, in fact, uo2 + uo2 = Vo2, hence it is nonzero at all points at which the absolute 
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value of velocity is nonzero. 

Equations (2.2) - (2.4) thus imply that all parameters of the external stream in the 
neighborhood of the considered point are known, whenever any two independent combi- 

nations of second derivatives of pressure are specified. In other words, in the considered 

case of a plane (or quasiplane) external stream there exist ony two independent second 

order parameters. The preceding formal derivation does not, however, give any indica- 
tion as to the physical meaning of these parameters and their relation to the secondary 

flow in the boundary layer. Let us, therefore, consider in more detail the effect of vari- 
ous factors on the velocity profile in the boundary layer and the formation of the secon- 
dary flow. 

3. The criterion of separation essentially depends on the magnitude and the pattern 
of distribution of velocity projections on the direction of the pressure gradient in the 
boundary layer. 

As shown by numerous experiments, the velocity profile in a two-dimensional bound- 
ary layer at the separation point is completely determined and thus yields a definite 

separation criterion. In a three-dimensional boundary layer the velocity profile canvary 

owing to two effects: first, that of divergence or convergence of streamlines (as already 
pointed out above) and, second, that of the wall, where the secondary flow can produce 
a distortion of the velocity profile. 

Let us consider possible changes of the velocity profile produced by a flow in the di- 

rection normal to the pressure gradient, which we shall henceforth call transverse flow 

(to avoid any confusion in the terminology, since a flow normal to streamlines of the 
external flow is usually called secondary flow). The velocity profile in the direction of 

the pressure gradient will be called basic. 
If all the parameters do not vary in the direction normal to the pressure gradient, the 

velocity of the transverse flow would be constant, and would have no effect on the velo- 
city profile in the direction of the pressure gradient, since outflowing particles would be 

replaced by the same number of incoming particles with the same parameters. An ex- 
ample of this is the formation of the boundary layer on cylindrical bodies of infinite 
span subjected to oblique flows. 

If the parameters do not remain constant in the direction normal to the pressure gradient, 

there are two reasons which may result in a substantial change of the basic flow velocity 

profile. 
First, the transverse flow velocity may not be constant when more particles enter a 

cross section of the boundary layer than are leaving it or vice versa. Since in the region 
of boundary layer close to the wall the transverse flow exerts a greater effect than the 
basic flow, hence in the first case the effect is similar to the blowing of gas into that 

region, while in the second it is that of sucking off gas from it. This may result in the 
velocity profile in the boundary layer becoming less full in the direction of the pressure 

gradient in the first case, and more full in the second. 
Another effect of the transverse flow may become apparent, when the pattern of velo- 

city profile in the boundary layer considerably varies along the normal to the pressure 

gradient (e.g. when &t i ah’ is considerable. N is a vector in the plane tangential to 

the surface and orthogonal to the vector of grad p). 
Iet the transverse flow be in the direction of N and an f 8N < O.This means that 
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particles carried by the transverse flow come from a region where the basic velocity 
profile in the boundary layer is less filled than in the considered cross section. Hence 

particles carTied away by the transverse flow are replaced by particles of low kinetic 

energy, which may lead to an earlier separation of the boundary layer. If, however, 
an I 8N > 0, the incoming particles have a higher kinetic energy and separation may 

be retarded. 
Let us define the parameters which determine the external stream in the neighbor- 

hood of the considered point and on which depends the nonuniformity of the transverse 

flow and of profile fullness in the direction of the pressure gradient. Since no forcesare 

acting along the normal to the pressure gradient, except those of viscosity, it is reason- 
able to assume that in the first approximation the intensity of the transverse flow is de- 

termined by the projection of the external stream velocity vector on the direction of 

vector N. Along N this projection may vary owing to the variation of the absolute 

value of velocity Ir andof angle cp between vectors N and grad p. The effect of 
suction or blowing in the immediate wall neighborhood induced by the transverse flow 

is the more pronounced the higher is the latter in relation to the basic stream. The re- 
lative intensity of suction or blowing may in the first approximation be considered pro- 

portional to the variation of the quantity (V . N) / V cos cp = -t,g cp in the direction 

of N , i.e. to 8 tg cp ! dN. This effect must, also, depend on the profile fullness of 
the basic flow. When the rate of basic flow at the wall is low (a velocity profile close 

to separation), a small amount of suction or blowing can considerably affect the profile. 
If, however, the rate of the basic flow at the wall is high (basic flow with a full velocity 
profile), the effect of a small amount of suction or blowing will be negligible. Since 
the fullness of the basic flow velocity profile depends primarily on the pressure gradient 

(more precisely, on the dimensionless parameter proportional to grad p), it is possible 
to conclude that the effect of suction or blowing induced by the nonuniformity of the 

basic flow is defined by the following combination: 

B = no (8 tgcp / dN), (3.1) 

Variation of the profile fullness along the normal to the pressure gradient depends in 
the first instance on 6’~ / dN, while the effect of that factor on the basic flow is the 

more pronounced the more intensive the transfer of particles from one cross section to 

another, i.e. the more intensive the transverse flow. Thus the effect of variation of the 
basic flow profile along the normal to grad p must, in the first approximation be pro- 
portional to the product 

c = tg (PO (82-c / GYV), (3.2) 

Let us prove that B and c are independent parameters of the second order. To do 
this we determine their expressions in terms of pressure derivatives and other hydro- 

dynamic parameters. If i and j denote unit vectors along the X- and y-axes, then 

vector N is determined by 

N = - (i /n) (dp / dy) -I- (j /n) (dp I&T) (3.3) 

For the scalar product (V l N), cos rp , and the derivative in the direction of N 
from (3.3) we obtain formulas (3.4) 
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After some transformations of (3.1) and (3.3) - (3.5) we obtain 

2 
i3”p ap 8p --- 

1 
, zo2tg~rpn 

asay ax %f 0 L povc2 

In a similar manner, from (1.12) and (3.2) - (3.5), we obtain 

The determinant D composed of coefficients at second derivatives of pressure in for- 

mulas (3,6) and (3.7) for B and c and, also, in formula (2,4), which imposes on the 
second derivatives of pressure a relationship which must be satisfied for any external 
flow, is 

D = (- 1 + MO2 cos2qQ (tg cp()) / CO82 ‘cl0 (3.8) 

It follows from (3.8) that D = 0: when q. = 0 or iM,z cos2 ‘pa = 1. In the first case 
the directions of velocity and pressure gradient coincide, and parameter C simply vani- 
shes at the considered point. in the first approximation the transverse flow is absent at 
the considered point, hence variations of the basic flow profile along the normal to 

grad p have no effect on the velocity profile at the considered point. In the second case 
the projection of velocity on the direction of pressure gradient is equal to the speed of 

sound. Such points in the stream are exceptional. Thus it follows from (3.8) that para- 
meters B and C are independent and not defined in terms of first- and zero-order 
parameters anywhere, except at singular points. 

4. Let us estimate the possible magnitude of the dimensionless parameter formed 
from B and compare it with the separation parameter of the two-dimensional boundary 
layer 5 [3]. Since the dimension [B] = [p] / [LIZ, where L has the dimension of length, 

therefore b = Bz02 i pOV,Z (4.1) 

where zO, a characteristic dimension of the boundary layer, is a dimensionless parameter. 

For our estimate we consider the flow of an incompressible fluid past a cylinder standing 
on a plate. Setting the coordinate origin on the plate at the cylinder center and direct- 
ing the x-and Y -axes, respectively, along and perpendicularly to the direction of the 
oncoming stream, for the absolute value of the stream velocity we obtain the expression 

PI Jr” = v-2 [i -+ 2R2 /‘(X2 + ?J2) + R” (P - 4 x2) / (1% + y”)“l (4.2) 

where R is the cylinder radius and V, is the absolute value of the oncoming stream 
velocity. For y = 0 at the axis of symmetry the directions of vectors grad p and V 
coincide, cos T,, = 1, tg qpo = 6, (ap / dy), := 0, (;tP / a~)* = i-t,, and B = - (a’+~ I 

&J2jc, c = 0. With the use of the Rernouili integral and (4.2) we find that at the axis 

of symmetry 
B = -2 pi‘,2KZ(P - 3 x2)/ x6 (4.3) 

The flow past a cylinder standing on a plate was experimentally investigated in [4],where 
it was found that the separation point at the axis of symmetry is at a distance of approx- 
imately s/X R from the cylinder center ; from (4.2) and (4.3) we have 
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BR2 / pV2 =: 0.7 (4.4) 

The length L of the plate from (its) leading edge to the separation point was L z 

16 R , and the Reynolds number was Re zz 4. 106. The ratio of the turbulent boundary lay- 

er displacement thickness in the separation region to the cylinder radius is of the order 
of 0.1. In that case, taking the displacement thickness 6 * as the characteristic dimen- 

sion in formula (4.1) and allowing for (4.4), we obtain B =: 0.018. Hence the order of 
magnitude of B is the same as’of the criterion of separation of a plane turbulent bound- 

ary layer [3] This confirms that the effects associated with the transverse flow may un- 

der certain conditions play an important part in the separation of a three-dimensional 

boundary layer. 
To answer the question whether parameters formed on the basis of higher order deri- 

vatives of pressure do play an essential role,we shall estimate parameter (#P i $j4) 6*4 i 
pV2 (the third derivative a3p / ay3 vanishes at the axis of symmetry). From (4.2) and 

the Bernoulli integral we find that at the axis of symmetry 

@p / ay4 = pVm4R2 (120 i x6 - 36 R2 I x8) (4.5) 

Setting, as previously, x = -5R / 3 and 6* / R = 0.1, from (4.5) we obtain that in 

the region of the separation point 

(tip / a@) 6*4 / pv2 z 0.001 

which is by one order of magnitude smaller than 8 and E. It can be readily ascertained 

that the magnitude of related parameters rapidly decreases with the increasing order of 
the derivative. 

Thus the right hand part of the separation criterion formula derived in [l] must con- 
tain in the general case the parameters b and y = CZ,* / P,,V,,~ with some coeffici- 

ents. The answer to the question how great is the effect of these parameters on separa- 
tion must await further experimental data, since the available ones are insufficient. 

Published data (e. g. [4] ) make it only possible to conclude that the value of the sepa- 
ration parameter can be substantially greater in the case of three-dimensional separation 
than in the two-dimensional case. 
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